Calculating Energy Efficiency Using A Chemical Mass Balance Method

Crispin Pemberton-Pigott

Reporting research on the combustion of solid fuels conducted at SeTAR Centre, University of Johannesburg Cape Peninsula University of Technology, Cape Town China Agricultural University, Beijing Presented at Brookhaven National Laboratory – 7 April 2016

Problem Statement

Test methods assume that the fuel burns and dries homogeneously If this was true there would not be a "char-burning phase"

Emissions and efficiency are miscalculated because of this assumption

Energy Efficiency:

An efficiency is a ratio:

<u>Useful Energy Delivered</u> X 100% Energy available in the fuel consumed

Consumed: Combusted to the point where remainder is abandoned

Energy Efficiency:

An efficiency is a ratio:

Useful Energy Delivered X 100% Energy available in the fuel consumed How is this determined?

Consumed: Combusted to the point where remainder is abandoned

Slide 4

H1 Harold, 2016-04-07

Fuel Analysis – MASHCON

- M Moisture
- A Ash
- S Sulphur
- H Hydrogen
- C Carbon
- O Oxygen
- N Nitrogen
- HHV Higher Heating Value

Fuel Analysis – MASHCON – Examples

Ultimate analysis (dry) in a mass basis

FUELS:	Albasia Charcoal	Albasia Pellets	Baganuur Coal	Baylag Erdene Coal	Lump Charcoal	Coffee Husks	Corn Cobs	Delmas Mine Coal
Ash %	2.25	0.75	7.18	26.47	6.66	2.50	3.02	20.00
Carbon %	82.00	49.40	74.10	61.64	79.00	49.32	46.35	63.00
Oxygen %	13.85	43.60	12.90	8.18	12.45	41.20	44.25	11.00
Hydrogen %	1.78	5.99	4.68	2.19	1.69	6.10	5.84	4.50
Sulphur %	0.02	0.01	0.19	0.52	0.10	0.07	0.09	1.00
Nitrogen %	0.10	0.25	0.95	0.99	0.10	0.81	0.45	0.50
Total %	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
HHV	29.47	19.85	16.00	23.73	29.80	18.34	17.65	18.19
LHV	29.05	18.45	14.91	23.22	29.41	16.92	16.29	17.14
DAF HHV	30.15	20.00	17.24	32.27	31.93	18.81	18.20	22.74
O/H Ratio (m)	7.78	7.28	2.76	3.73	7.37	6.75	7.58	2.44

	New Raw	Reusable fuel	Unusable fuel	
Fuel Analysis -	Fuel	Net change	Discarded	
	Albasia Pellets	Reusable Albasia Pellets	Charcoal	
MASHCON —				
Multi-fuel	8.21	-	-	% WWB
	0.69	0.75	6.66	Ash
	0.01	0.01	0.10	Sulphur
Determination of	5.50	5.95	1.69	Hydrogen
the fuel	45.34	49.42	79.00	Carbon
composition can	40.02	43.62	12.45	Oxygen
be challenging	0.23	0.25	0.10	Nitrogen
	100.00	100.00	100.00	%
-	1,017	0	220	
			797	Total burned, g
			10.8	Total energy yielded, MJ
			1,017	Total consumed, g
			13.8	Total energy available, MJ
			2.98	Total energy wasted, MJ

Т

Fuel Analysis – MASHCON

Determination	Fuel As Burned	Analysis as burned		
of the fuel	Moisture % of fuel As Burned (AB)	10.37	% WWB	
of the fuel	Ash % As Burned	- 0.49	% Wet Basis	
composition	Sulphur % As Burned	0.01	% Wet Basis, Ash in	
can get	Hydrogen % As Burned	6.54	% Wet Basis, Ash in	
complicated II	Carbon % As Burned	35.70	% Wet Basis, Ash in	
	Oxygen % As Burned	47.61	% Wet Basis, Ash in	
	Nitrogen % As Burned	0.27	% Wet Basis, Ash in	
	Data check	100.00	% Wet Basis, Ash in	
As Burned	Heating Value (HHV) Dry, ash in, As Burned	17.12	MJ/kg Dry This valu	
	Heating Value (LHV) Dry, ash in, As Burned	15.44	MJ/kg This value =	
Ash-Free	Heating value As Burned	13.57	MJ/kg This value is	
heat content	ARV Factor conversions to mass/kg As Burned (AB)	0.995	Multiply emissions p	
	DAF Factor for conversions	1.110	Multiply emissions p	
- ADAF	Raw Fuel Heat Value AR, considering moisture	16.72	MJ/kg Used to calcu	
	As Burned Ash-Free heat content - ABAF	13.51	MJ/kg This value is u	
	Dry Ash-Free - DAF	15.06	MJ/kg To be used for	

Collect the Products of Combustion

Tracking the combustion is challenging too

B.E.S.T. Lab, CAU College of Engineering

Heat Gained – Space Heating

Calculate what energy was available in the fuel

Calculate the losses up the stack

- Siegert Method estimates losses up the stack
- Gas-by-gas calculation estimate losses up the stack

Heat Gained, by subtraction

Step 1: Combust the Fuel

Remove the ash and convert to Molar Elements

Combustion								
This calculation is done	This calculation is done with fuel, wet or not, and no excess air							
	Mass %	Moles	Gas names					
Homogeneous combustion of fuel ARAF								
	Ultimate Analysis Ash Free, % Mass	Moles of elements in fuel/kg + water	Principle Emissions					
Carbon	75.55	62.90	< Fuel C					
Oxygen	13.15	8.22	< Fuel O					
Hydrogen	4.77	47.34	< Fuel H					
Moisture in Fuel	5.37	5.96	< H in fuel H ₂ O					
Oxygen content of H2O		2.98	< O in fuel H ₂ O					
Sulfur	0.194	0.06	< Fuel S					
Nitrogen in Fuel	0.969	0.69	< Fuel N					
Argon from Air			Air Ar >					
N2 from air			Air $N_2 >$					
Total	100 g	128.15						

Step 1: Combust the Fuel

Combust in Air

Burn in air, no EA Undiluted Undiluted moles of gases after burning	Added combustion air containing O ₂ , N ₂ , Ar and CO2	Total Moles of Combustion Gases	Total % of Wet Combustion Gases	Water
62.90	0.1357	63.04	17.59	Vapour
			-	74.000 ppm
23.67			-	
2.98		26.65	7.44	
				-
0.06		0.06	0.02	-
0.69		0.69	0.19	-
	3.1675	3.1675	0.88	-
	264.80	264.80	73.88	
90.3 moles of gas	268.1 moles gas+air	358.40	100 %	
				12

Assumptions

- 1. Hydrogen and Oxygen are present in the Fuel and Water in known ratios
- 2. Fuel O and Fuel H are released homogeneously from biomass even if the

fuel burns inhomogeneously

Fuel O = a	8.22045
H2O O = b	2.97852
Fuel H = c	47.3392
H2O H = d	5.95674
Fixed Ratio a/c	0.17365
Fixed Ratio b/d	0.50002
Ratio ∑O/∑H	0.21013

Assumptions

- 1. Hydrogen and Oxygen are present in the Fuel and Water in known ratios
- 2. Fuel O and Fuel H are released homogeneously from biomass even if the

fuel burns inhomogeneously

Fuel O = a	8.22045	
H2O O = b	2.97852	
Fuel H = c	47.3392	
H2O H = d	5.95674	
Fixed Ratio a/c	0.17365	All three are
Fixed Ratio b/d	0.50002	simultaneously
Ratio ∑O/∑H	0.21013	true

De-combustion

De-Combustion							
	Delete Air						
	Split H2						
Moles of	Remove air: CO ₂ ,	Split Fuel H from		Estimated ARAF			
elements	NAr+O, Mol	H₂O, Mol	g	Ultimate			
Entrained with air	Elements	Elements		Analysis % mass			
0.1357	62.901	62.901	75.548	75.55	Carbon		
71.3027	11.19897	8.2205	13.152	13.15	Oxygen		
	53,29593	47.339	4.772	4.77	Hydrogen		
	Water O>>	2.979	5.366	5.37	Moisture from Fuel		
	Water H >>	5.957					
	0.060	0.060	0.194	0.19	Sulfur		
	0.692	0.692	0.969	0.97	Nitrogen in Fuel		
3.1675	-				Argon from Air		
264.80	-				N ₂ from Air		
71.44 moles	128.15 moles	128.15 moles	100.00	100.00			
			Mass	%			

De-combustion

		De-Combustion				
Moles of elements Entrained with air	Delete Air Split H2 Remove air: CO ₂ , NAr+O, Mol Elements	Split Fuel H from H ₂ O, Mol Elements	g	Estimated ARAF Ultimate Analysis % mass		Check for a fuel
0.1357	62.901	62.901	75.548	75.55	Carbon	
71.3027	11.19897	8.2205	13.152	13.15	Oxygen	surplus
	53.29593	47.339	4.772	4.77	Hydrogen	
	Water O >>	2.979	5.366	5.37	Moisture from Fuel	
	Water H >>	5.957				
	0.060	0.060	0.194	0.19	Sulfur	The HHV of this "fuel"
	0.692	0.692	0.969	0.97	Nitrogen in Fuel	
3.1675	-				Argon from Air	is used in the
264.80	-				N ₂ from Air	denominator of the
71.44 moles	128.15 moles	128.15 moles	100.00	100.00		
			Mass	%		Efficiency calculation

The HHV can be calculated in real time as the fuel evolves The CO_{2MAX} value can be calculated in real time

The HHV can be calculated in real time as the fuel evolves The CO_{2MAX} value can be calculated in real time

The ratio of the oxygen provided by air to the total oxygen demand can be determined in real time [*StOxR*]

The HHV can be calculated in real time as the fuel evolves The CO_{2MAX} value can be calculated in real time

The ratio of the oxygen provided by air to the total oxygen demand can be determined in real time [*StOxR*]

The stoichiometric volume of combustion gases can be calculated using StOxR. From this the diluted volume of gases can be calculated using the Excess Air level. The concentration of pollutants in that volume can be determined.

The HHV can be calculated in real time as the fuel evolves The CO_{2MAX} value can be calculated in real time

The ratio of the oxygen provided by air to the total oxygen demand can be determined in real time [*StOxR*]

The stoichiometric volume of combustion gases can be calculated using StOxR. From this the diluted volume of gases can be calculated using the Excess Air level. The concentration of pollutants in that volume can be determined.

The mass of emissions can be reported more accurately per measurement interval.

Why is this an improvement?

Two **different approaches** can be made:

- 1. Assume the fuel burns and dries homogeneously
- 2. Assume this is not the case but that the Oxygen and Hydrogen are released from the fuel homogeneously

The Chemical Mass Balance assumptions provide an analysis that more **closely represents** what is actually happening in a solid fuel fire.

Fuel O = a	8.22045
H2O O = b	2.97852
Fuel H = c	47.3392
H2O H = d	5.95674
Fixed Ratio a/c	0.17365
Fixed Ratio b/d	0.50002
Ratio ∑O/∑H	0.21013

Why is this an improvement?

Two **different approaches** can be made:

- 1. Assume the fuel burns and dries homogeneously
- 2. Assume this is not the case but that the Oxygen and Hydrogen are released from the fuel homogeneously

The Chemical Mass Balance assumptions provide an analysis that more **closely represents** what is actually happening in a solid fuel fire.

Fuel O = a	8.22045	
H2O O = b	2.97852	
Fuel H = c	47.3392	
H2O H = d	5.95674	
Fixed Ratio a/c	0.17365	Fuel O to Fuel H
Fixed Ratio b/d	0.50002	Water O to Water H
Ratio ∑O/∑H	0.21013	Measured ∑O to Measured ∑H

Thank you!

Appreciations:

Staff and graduate students at:

The SeTAR Centre, Research Village, University of Johannesburg, Department of Geography, Environmental Management and Energy Studies, JHB, R.S.A.

Chinese University of Agriculture, College of Engineering, Beijing, China

Cape Peninsula University of Technology, Cape Town, R.S.A.

This work represents personal efforts and was not funded.

Stove making, Bishkek, Kyrgyzstan 2016

Stove testing lab, Haidian North, China 2016